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Abstract

In the present paper the Green’s function is utilized to provide a simple, exact and direct analytical method for analysis

of a beam structure of generic boundary conditions with attached springs and/or finite masses. The aim is to confine the

vibration in a certain part of the structure. The beam equation is based on the Timoshenko beam theory with corrections

for shear deformation and rotary inertia effects. In the analysis the beam is driven by a harmonic external excitation. The

attached springs are modeled as simple reactions that provide transverse forces to the beam, while each added mass

provides a transverse force in addition to a moment at its location. These forces (moments) act as secondary forces

(moments) that reduce the response caused by the external force. Numerical simulations are conducted to find the optimal

masses and/or springs that confine the vibration in a certain chosen region. The results were compared to that obtained

from Euler–Bernoulli beam theory. Beams that are excited by a bi-harmonic force as well as dual excitation forces are

analyzed. In addition, the case when the beams are excited near resonances is discussed. Also, a method is proposed to

impose a node at any desired location along the structure.

r 2006 Published by Elsevier Ltd.
1. Introduction

The need for lightweight structures for many applications has spurred the formulation of vibration
confinement techniques to alleviate disturbance-induced structural vibration. These structures have inherently
low structural damping; therefore, a disturbance may cause many vibration-induced problems such as
structural degradation and failure, performance deterioration, malfunction of components and processes,
material fatigue, noise transmission, human discomfort, hazard and various other problems. In addition, the
occurrence of vibration in some structures that are equipped with sensitive elements may weaken their
performance. Therefore, it may be of interest to eliminate vibration from a certain part of the structure more
than the other. The large flexible space structures, for example, are usually built from lightweight materials
with low damping. An excitation source may cause vibrations that propagate throughout the structure. In
such case it is desirable to confine vibration in some chosen insensitive part while keeping other parts, for
ee front matter r 2006 Published by Elsevier Ltd.
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Nomenclature

ai location of added ith spring
A cross-sectional area of the beam
br location of added rth mass
E modulus of elasticity
F0 excitation force amplitude
G shear modulus
G(x,u) Green’s function
I area moment of inertia of cross section
J mass moment of inertia of added mass
ki ith spring stiffness
k0 shear factor
kb wavenumber

L beam length
mr rth added mass
p(x, t) applied force per unit length
t time variable
w(x, t) transverse deflection
W(x) transverse displacement amplitude
x axial coordinate along the beam
g shear angle
l spatial wavelength
m mass ratio
n poisson’s ratio
r beam material density
o excitation frequency
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instance an extremely sensitive antenna, relatively undisturbed. Therefore the vibration suppression of a
structure excited by external forces has been the subject of numerous investigations because of its
relevance to aeronautical, mechanical and structural engineering. The ideas suggested range from the use of
passive control (utilizing added masses, springs, dampers, etc.) to the use of active control with sophisticated
control strategies (utilizing sensors, actuators, smart materials, feedback devices, etc.). In periodic structures,
some random disorders (interruption of periodicity) may be introduced intentionally to suppress the
vibration utilizing mode localization phenomenon in which a structure simultaneously exhibits localized areas
of relatively large amplitudes, where vibrational energy is contained, and isolated areas of small amplitudes.
Mode localization has been known in solid state physics for over 40 years, being discovered by Anderson in his
famous theoretical paper [1]. In the early 1980s, localization has been first studied as means for
achieving vibration isolation in elastic structures by Hodges [2] who evidenced this phenomenon
in structural dynamics by both theoretical investigation and experimental demonstration. Since then, many
studies have been devoted to investigate the occurrence and the effects of this phenomenon in the area of
structural dynamics. Among these studies, for example are Hodges and Woodhouse [3], Pierre and
Dowell [4], Luongo [5] Bendiksen [6], and many others, see special issue on ‘‘localization phenomenon in
physical and engineering sciences’’ [7]. These studies showed that mode localization is associated with
frequency coalescence and frequency veering phenomena and the system exhibits a damping-like effect that
could be used as passive control of vibration transmission. Localization theory is interesting because its
prediction may run counter to our intuition and contradicts common engineering established views. The
practical applications of localization have not been fully explored and the potential benefits have not yet been
realized.

The purpose of the present analysis is to investigate the effect of added masses and their rotary inertia and/
or springs on beams vibration. The equations of motion of the beam are based on Timoshenko beam theory in
which the effects of rotary inertia and shear deformation are included. A technique utilizing the dynamic
Green’s function is presented to find the best arrangement of masses and/or springs, for vibration con-
finement in a certain part of a sinusoidally driven beam. The optimum mass is obtained at each
external exciting frequency. Some of the objectives of the present work are similar to that of Keltie and Cheng
[8] who used modal analysis approach to investigate the effects of added masses on vibrational
behavior of a simply supported Euler–Bernoulli beam and furthermore utilized the results to control or
reduce the vibration response. In their analysis, they considered only the mass locations as design parameters.
In the present analysis a single or multiple rigid masses with rotary inertia and/or springs are attached to the
beam at prescribed locations to maintain the vibration level significantly small at certain locations along the
beam.

The problem being studied falls in the class of the dynamics of combined systems, which consist of linear
elastic structures carrying lumped attachments. The free vibrations of such systems are studied extensively in
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the literature [9–27]. Literature review indicates that the authors of these papers have generally directed their
investigations into finding the natural frequencies and the corresponding mode shapes. The most common
analytical approach used is the assumed mode methods. Other approach such as finite element, Laplace
transform, transfer matrix, sub-structuring method, Lagrange’s multipliers and analytical and numerical
combined method are also used. In addition, a pure analytical (closed form) solution for a few simple special
cases was reported.

For any type of boundary conditions, the exact natural frequencies and mode shapes for a Timoshenko
beam with attached springs and/or rigid masses, each associated with mass moment of inertia can be obtained
as a result of the present analysis. However, in order not to disturb the focus of the present paper we will
neither discuss the natural frequencies nor the mode shapes of the system being studied.

A key feature of the present work is that the problem is formulated in terms of the Green’s functions. This
method is exact and straightforward. It was chosen for its freedom from numerical accuracy when compared
to the standard application of modal superposition technique. The boundary conditions are embedded in the
Green’s function of the corresponding beam and it is not necessary to solve the free vibration problem in order
to obtain the eigenvalues and the corresponding eigenfunctions, which are required for modal superposition
solution. Equally important, this procedure exhibits appreciably greater computational efficiency when
compared with other methods. Therefore any engineer without any difficulty of pragmatic nature can use it.
The present paper is concerned essentially with a system similar to that investigated in Ref. [28] but in this
analysis the Timoshenko beam model is used and the rotary inertia of the added rigid masses is included as a
counter part of that investigation.

2. Dynamic modeling

The Euler–Bernoulli beam theory, in which the effects of rotary inertia and shear deformation are neglected,
represents an engineering approximation that substantially simplifies any further analysis. But neglecting the
rotational inertia is not always justified because while the magnitude of the mass moment of inertia per unit
length may be small, at very high frequencies the contribution of the angular acceleration could be significant.
On the other hand, neglecting the shear deformation even though the cross sections of the beam carry a
resultant shear force represents an anomaly. In actuality, the shear stress and shear strain vary over the cross
section, because the shear stress must be zero at the upper and lower surfaces of the beam. As a consequence of
these simplifying assumptions the obtained equation of the beam is only adequate for slender beams of lower
vibrational modes. In other words, the Euler–Bernoulli beam model is inadequate for short and thin-webbed
beams and beams where higher modes are excited, as well as for beams that are made of material sensitive to
shear stress. From wave point of view, the Euler–Bernoulli beam theory predicts unrealistic wave speed
because it approaches infinity for very high frequencies. This unrealistic limit is corrected by subsequent beam
theories.

Lord Rayleigh [29] incorporated the effect of rotational movements of beam element as a first correction to
the simple theory. The partially refined beam equation is known as Rayleigh beam. Later on, another
engineering refinement was made by Timoshenko [30,31] who proposed a beam theory, which adds the effect
of shear deformation as well as the effect of rotational inertia to the Euler–Bernoulli beam model. As it is easy
to see that during vibration, a typical element of beam performs not only transverse motion but also rotates.
Timoshenko approximated the effect of shear as an average over the cross section. This entails allowing each
cross section to rotate independently of the slope of the centroidal axis in the deformed state. After the two
classical papers on beam vibrations by Timoshenko, hundreds of papers have been published considering
Timoshenko beam model. These studies (e.g. [32]) show that the effects of rotary inertia and shear
deformation (Timoshenko effects) on the first mode of vibration are small, but these effects increase rapidly
for second and higher modes.

The system to be considered consists of a uniform elastic beam of finite length L originally at rest with
different classical or unconventional boundary conditions at x ¼ 0 and L (not shown in Fig. 1). There is R

finite rigid masses each having mass mr with associated mass moment of inertia Jr. In addition there are N

translational springs each has a stiffness ki attached to the beam at different locations. The beam is driven by a
sinusoidal external force. Upon neglecting beam axial inertia, the expression of the total kinetic energy of the
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Fig. 1. A uniform beam with attached finite masses and springs.
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system can be written as

T ¼
1

2

Z L

0

rA
qwðx; tÞ

qt

� �2

dxþ
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where r is the mass per unit volume of beam material, A is the cross-sectional area, I is area moment of inertia
of cross section, w(x,t) and c(x,t) are the transverse deflection and bending slope at spatial point x along the
beam and at time t, respectively. br is the location of concentrated mass mr and d(.) is the Dirac delta
singularity function.

The potential energy can be written as

U ¼
1

2

Z L

0

EI
qc
qx

� �2

þ k0AGg x; tð Þ2
" #

dxþ
1

2

Xi¼N
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kiw ai; tð Þ
2d x� aið Þ, (2)

where E is modulus of elasticity, G is the shear modulus of rigidity which equals to E/(2+2n) where n is
Poisson’s ratio, g is the shear strain and ai is the location of the ith spring. k0 is shear correction factor, being
defined as the ratio of the averaged shear strain within the cross section to the shear strain at the section
centroid [33]. Some references take the numerical values of k0 as 5

6
for a rectangular cross section and 9

11
for a

circular one.
The equations of motion can now be derived by applying Hamilton’s principleZ t2

t1

d T �Uð Þ dxþ

Z t2

t1

dWnc dt ¼ 0, (3)

where dWnc denotes the virtual work done by the non-conservative forces and can be expressed as

Wnc ¼

Z L

0

f ex x; tð Þw x; tð Þ dx, (4)

where fex(x,t) represents the external applied force per unit length of the beam.
Substituting the expressions for T, U and Wnc in the standard form of Hamilton’s principle, Eq. (3), and

then performing the usual variation, the following field displacements equations are derived
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ARTICLE IN PRESS

Table 1

Boundary conditions

End support Euler–Bernoulli theory Timoshenko theory

Simple w(x,t) ¼ 0 w(x,t) ¼ 0

w00(x,t) ¼ 0 w00(x,t) ¼ 0

Clamped w(x,t) ¼ 0 w(x,t) ¼ 0

w0(x,t) ¼ 0
w000 x; tð Þ �

r
k0G

€w0 x; tð Þ þ
k0AG

EI
w0 x; tð Þ ¼ 0

Free w00(x,t) ¼ 0 w00 x; tð Þ �
r

k0G
€w x; tð Þ ¼ 0

w00 0(x,t) ¼ 0 w000 x; tð Þ �
r

k0G
þ

r
E

� �
€w0 ¼ 0
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Eqs. (5) and (6) can be decoupled and one can obtain an equation which governs the beam transverse
deflection w(x,t) and another equation that governs the rotation of the cross section c(x,t). The equation
governing w(x,t) can be obtained by solving Eq. (6) for qc=qx and substituting the result in Eq. (5). This
procedure leads to

EI
q4w
qx4
þ rA

q2w
qt2
� rI 1þ

EA

Ks

� �
q4w

qx2qt2
þ

r2AI

Ks
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qt4
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q2f
qt2
�

EI

Ks

q2f

qx2
þ
Xr¼R

r¼1
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q3w

qxqt2
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where Ks ¼ k0AG is the shear rigidity and f is given by

f ¼ f exðx; tÞ �
Xr¼R

r¼1

mr

q2w
qt2

d x� brð Þ �
Xi¼N

i¼1

Kiwd x� aið Þ. (8)

It is to be noted that the coupling between the transverse deflection w(x,t) and the bending slope c(x,t) is
retained via the boundary conditions at the two ends of the beam as shown in Table 1 for conventional end
supports. In this table the primes denote differentiation with respect to x, while the dots represent
differentiation with respect to time.

In essence, the Timoshenko beam model results in two fourth-order partial differential equations in time
and space for the transverse deflection and the bending slope. Consequently, solving the boundary value
problem yields two independent sequences of natural frequencies and two corresponding sequences of mode
shapes. A particular natural frequency and its corresponding mode shape describe one particular solution to
the boundary value problem of the beam. From the eigenfunction expansion sense, all these possible solutions
have to be considered in the complete series expansion of the beam field displacements. However, the question
of whether the two independent sequences of natural frequencies imply the existence of two distinct spectra of
frequencies has been a long standing topic of debate, and hitherto has not been solved completely [34–38].
Fortunately, the use of the Green’s functions method to solve the cited problem annihilates sharing the
ongoing debate.

We proceed by assuming that the external force fex(x,t) to be concentrated at location x ¼ x0. Hence it may
be expressed formally using the Dirac delta singularity function

f exðx; tÞ ¼ F 0e
iotd x� x0ð Þ, (9)

where o is the excitation frequency.
As may be confirmed by a direct substitution, Eqs. (7) and (8) have a particular harmonic solution of the

following form:

w x; tð Þ ¼W xð Þeiot. (10)
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This allows Eqs. (7) and (8) to be reduced to
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where

F ¼ F 0d x� x0ð Þ þ o2
Xr¼R

r¼1

mrW brð Þd x� brð Þ �
Xi¼N

i¼1

kiW aið Þd x� aið Þ: (12)

It will be convenient for further progress if, at this stage, we collect together some terms, simplify Eq. (11) and
put it in the following form
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where
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and the prime denotes (1/L)/(d/dx).
Eq. (13) is in the form

W 0000 � bW 00 � a4W ¼ PðxÞ, (15)

where

P xð Þ ¼ K1F xð Þ þ K2F
00 xð Þ þ K3

Xr¼R

r¼1

JrW
0 brð Þd

0 x� brð Þ: (16)

The dynamic Green’s function is utilized to find the solution for Eq. (15). Hence, if G(x,u) is the dynamic
Green’s function for the stated problem the solution of Eq. (15) takes the form [39]

W xð Þ ¼

Z L

0

P uð ÞG x; uð Þ du: (17)

Even though integration must be carried out, one regards Eq. (17) as the solution of the stated problem. For
any P(u) we can work out the integration in Eq. (17), at least in principle. In practice one might have to resort
to numerical integration and/or one might be able to extract an asymptotic behavior from the integral.
Fortunately, the functional form of P(u) given by Eqs. (12) and (16) facilitates performing the integration.
Utilizing the properties of the d-function and performing the integration one gets

W ðxÞ ¼ F 0Gðx;x0Þ þ o2
Xr¼R

r¼1

mrW ðbrÞGðx; brÞ �
Xi¼N

i¼1

kiW ðaiÞGðx; aiÞ

þ K3

Xr¼R

r¼1

JrW
0ðbrÞḠu x; brð Þ; ð18Þ

where G(x,u) is the solution of

G0000ðx; uÞ � bG00ðx; uÞ � a4Gðx; uÞ ¼ K1dðx� uÞ þ K2d
00
ðx� uÞ, (19)
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while Ḡðx; uÞ is the solution of

G0000 x; uð Þ � bG00 x; uð Þ � a4G x; uð Þ ¼ d x� uð Þ (20)

and Ḡuðx; uÞ is the derivative of Ḡðx; uÞ with respect to u.
The functions G(x,u) and Ḡðx; uÞ can be derived using the conventional approach [40–43] or using the

Laplace transformation [44]. The Green’s function is a two-point function of position and is independent of
the forcing term in the inhomogeneous differential equation representing the boundary value problem but
depends only upon differential equation being examined and the boundary conditions which are imposed, see
books by Roach [39,45]. Furthermore, it is a symmetric function that satisfies the Maxwell–Rayleigh
reciprocity law. It is worth mentioning that, in principle, the Green’s function for any system can be
determined experimentally utilizing its physical meaning: it is the frequency response function of the system.

To this end, one evaluates the W(x) from Eq. (18) at all points of spring and mass attachments, i.e. at x ¼ ai

and br, for i ¼ 1 to N and r ¼ 1 to R. In addition, one evaluates W0(x) at x ¼ br, for r ¼ 1 to R. This gives
N+2R equations with N+2R unknowns being:

W ða1Þ;W ða2Þ; . . . ;W ðaN Þ;W ðb1Þ;W ðb2Þ; . . . ;W ðbRÞ;W
0ðb1Þ;W

0ðb2Þ; . . . ;W
0ðbRÞ.

These equations can be written concisely in matrix form as

Dz ¼ c , (21)

where the vectors z and c are given by

z ¼ W a1ð Þ;W a2ð Þ; . . .W aNð Þ;W b1ð Þ;W b2ð Þ; . . .W bRð Þ;W
0ðb1Þ;W

0ðb2Þ; . . .W
0ðbRÞ

� �T
, (22)

c ¼ F 0 G a1;x0ð Þ; . . .G aN ;x0ð Þ;G b1;x0ð Þ; . . .G bR; x0ð Þ;Gx b1;x0ð Þ; . . .Gx bR; x0ð Þ
� �T

(23)

and D ¼ I+B where I is the identity matrix and the matrix B is given by

B ¼
B11 B12

B21 B22

" #
, (24)

where

B11 ¼ G d‘0 ; d‘ð Þ½ �V; ‘0; ‘ ¼ 1; 2; . . . ;N þ R

B12 ¼ Ḡu d‘; brð Þ
� �

V; ‘ ¼ 1; 2; . . . ;N þ R; r ¼ 1; 2; . . . ;R

B21 ¼ G br; d‘ð Þ½ �V; r ¼ 1; 2; . . . ;R; ‘ ¼ 1; 2; . . . ;N þ R

B22 ¼ Ḡux br; br0ð Þ
� �

V; r ¼ 1; 2; . . . ;R; r0 ¼ 1; 2; . . . ;R

(25)

d ¼ a1; a2; . . . ; aN ; b1; b2; . . . ; bRf g
T,

V ¼ diag k1; k2; . . . ; kN ; x1; x1; . . . ; xRf g,

U ¼ diag Z1; Z2; . . . ; ZR

� �
ð26Þ

and

xr ¼ �mro2; Zr ¼ K3Jr. (27)

The unknown vector z can be obtained by solving the matrix Eq. (21). One next substitutes the vector z into
Eq. (18) to obtain the deflection at any point x on the beam span. Specifically

W xð Þ ¼ F0Gðx;x0Þ �
Xi¼N

i¼1

kiW aið ÞG x; aið Þ

�
Xr¼R

r¼1

xrW brð ÞG x; brð Þ þ
Xr¼R

r¼1

ZrW
0ðbrÞḠu x; brð Þ: ð28Þ
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It is worth observing that if one is interested in evaluating the natural frequencies of the beam with mass and/
or spring attachments, the determinant of the matrix D can be set equal to zero to obtain a highly
transcendental frequency equation which can be solved by appropriate techniques.

3. Numerical simulations results

A simply supported beam is considered. The parameters selected in the numerical simulations, correspond
to the data used in Ref. [8]. The beam span L ¼ 20m, modulus of elasticity E ¼ 19.5� 1010N/m2, thickness
h ¼ 0.026458m, width b ¼ 1m, density r ¼ 7700 kg/m3 and the shear factor k0 ¼ 0.85. Therefore the mass of
the beam mb ¼ 4073 kg. The mass ratio m is defined as the sum of the values of the added masses divided by the
mass of the beam mb. In addition, the spatial wavelength of the flexural wave is l ¼ 2p/kb where kb is the lower
wavenumber of the beam without attachments. In all the figures, the dashed lines correspond to the deformed
shape of the beam without attachments (unloaded beam) while the solid curves correspond to the deformed
shape of the beam with attachments (loaded beam).

3.1. Inertia of added masses are neglected

Fig. 2 shows the dynamic response of a beam due to an excitation force that acts at its mid-span, which is
the most important case in general, with an amplitude F0 ¼ 1000N and an excitation frequency o ¼ 5Hz. It
is observed that the smallest mass that suppresses the vibration in the right half of the beam should be attached
in the left half at any peak or trough of the flexural displacement of the unloaded beam. In the figure, a single
mass equals 188.9934 kg (the mass ratio m ¼ 0.046) is attached at b1 ¼ 8.6877m which corresponds to 1.25l.
Using the close connection between waves and vibrations, Fig. 3 depicts the physical implications of the added
mass. This mass was treated as if causing a purely inertial reaction acting as a secondary force with magnitude
that depends on the square of the deriving frequency, the transverse displacement amplitude at mass location
Fig. 2. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 5Hz, F0 ¼ 1000N, x0 ¼ 10m,

m1 ¼ 188.9934kg, J1 ¼ 0 kgm2, at b1 ¼ 8.6877m, ––––, loaded; - - - -, unloaded; J, mass location.
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Fig. 3. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 5Hz, - - - -, unloaded with

F0 ¼ 1000N, x0 ¼ 10m, -.-.-.-, unloaded; with Fs ¼ �370.1492N, xs ¼ 8.6677m, ––––, loaded with F0 ¼ 10000N, x0 ¼ 10m,

m1 ¼ 188.9934kg, J1 ¼ 0 kgm2 at b1 ¼ 8.6877m, J, mass location.
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and the value of the mass. Specifically Fs ¼ mo2W(b1). In the part of the beam to the left of the excitation
force, this secondary force creates a flexural wave that is out of phase of the flexural wave generated by the
external (primary force). But these two waves are in phase in the part of the beam to the left of the excitation
force. When these two waves superimpose, the result is zero in the right part of the beam. In Fig. 3, the
dot–dashed line represents the flexural wave due to the inertia force generated by the added mass. The value of
this force Fs ¼ �374.3904N acting at location b1. The dashed line represents the flexural wave due to the
primary force F0 ¼ 1000N at x0 ¼ 10m. As can be seen, these two waves are 1801 out of phase in the right half
of the beam. Therefore, mixing of the two waves results in destructive interference in that region. From the
energy point of view, what the mass does is to inhibit the energy injected into the beam from propagating
towards the right side of the beam and to confine it to the left side. This results in increased displacement
amplitude in one side of the beam while the amplitude in the other side is diminished. This is not similar to
Anderson mode localization phenomenon [1] in which the energy injected into the system cannot propagate
very far but instead is confined to the region close to the excitation source.

Obviously the minimum value of the mass required to confine vibration should be located at any peak or
trough of the flexural wave since at any of these positions the magnitude of the displacement is a maximum.
Therefore to find this value, we first select its location b1 and then equate the response of the beam due to the
primary force at any peak or trough in the right part of the beam, say xp, to the corresponding response due to
the secondary force. Specifically, setting R ¼ 1, and kr ¼ Jr ¼ 0, Eq. (28) is simplified to

W xð Þ ¼ F0G x; x0ð Þ þm1o2 b1ð ÞG x; b1ð Þ. (29)

Accordingly Eq. (21) is reduced to a scalar algebraic equation that can be solved for W(b1). Hence Eq. (29)
becomes

W xð Þ ¼ F 0G x;x0ð Þ þ
m1o2F 0G b1;x0ð Þ

1�m1o2G b1; b1ð Þ
G x; b1ð Þ. (30)
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Setting x ¼ xp, equating W(xp) ¼ 0 and then solving for the required mass lead to the following simple
analytical expression:

m1 ¼
G xp; x0

	 

o2 G bp;x0

	 

G b1; b1ð Þ � G b1;x0ð ÞG xp; b1

	 
� � . (31)

Therefore, one can always find the minimum value of the mass that can be attached to the beam for any
excitation frequency as long as m1o

2G(b1,b1) 6¼1 and m1 is positive. The extension to more than one mass and/
or springs are obvious (one must solve a system of simultaneous algebraic equations).

It is to be noted that the ratio of the added mass to the beam mass is very small. Therefore, the changes in
the natural frequencies could not be significant as seen from Table 2. The results in Table 2 agree very well
with that extracted from Grant [14] who studied vibration of Timoshenko beam carrying a concentrated mass
Table 2

The first six natural frequencies of the unloaded and loaded beam with attached mass m1 ¼ 188.9934kg at b1 ¼ 8.6877m (mass ratio

m ¼ 0.464)

Natural frequency (Hz) Loaded Unloaded

o1 0.1446335 0.150938

o2 0.5996017 0.603774

o3 1.3210999 1.358405

o4 2.3640625 2.414892

o5 3.7733779 3.773168

o6 5.2571589 5.433185

Fig. 4. Mode shapes for loaded and unloaded simply supported beam when, m1 ¼ 188.9934kg, J1 ¼ 0 kgm2 at b1 ¼ 8.6877m, ––––,

loaded; - - - -, unloaded; J, mass location.
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Fig. 5. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 5Hz, F0 ¼ 1000N, x0 ¼ 10m,

m1 ¼ 188.9934kg, J1 ¼ 0 kgm2 at b1 ¼ 11.3123m, ––––, loaded; - - - -, unloaded; J, mass location.
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at arbitrary position using Laplace transformation. Fig. 4 depicts the corresponding mode shape of the loaded
beam compared to the unloaded one. It is seen that the third and the fourth modes of the loaded beam are
1801 out of phase of the corresponding unloaded one and the locations of the nodes are displaced a little bit. In
addition the modes of the loaded beam are extended through out the whole beam (not localized) as that of the
unloaded beam. Therefore, we cannot ascribe the vibration confinement that occurred due to the added mass
to Anderson’s localization phenomenon.

If one is interested in controlling the vibration in the left half of the beam, a mass of the same value should
be attached in the right half instead, as shown in Fig. 5. Instead, one can use a set consisting of two masses
each of 93 kg, or a set consisting of three masses of 61 kg each. In these alternative choices, masses are attached
in the right half of the beam at peaks or troughs of the flexural wave of the unloaded beam.

A final added note is concerned with the sensitivity of the dynamic response of the loaded beam to small
differences in system’s parameters. It was found that small deviations in the position of the added mass and/or
its location can cause small changes in the dynamic behavior of the loaded beam compared with the
case when the optimal mass is located at a peak or a trough. But small deviations in the excitation frequency
(detuning), while fixing the value of the added mass and its location, can cause drastic change in the dynamic
behavior of the loaded beam and break down the vibration confinement. Therefore, confinement is much more
sensitive to the deviations in the excitation frequency than the deviations in the value of the added mass or its
location.

Fig. 6 depicts the dynamic response of the beam for excitation frequency o ¼ 60Hz. The excitation force
acts at a mid-span with an amplitude F0 ¼ 1000N. A single mass of value 10.85 kg is attached at 8.5315m
which corresponds to 4.25l, is needed to suppress the vibration in the right half of the beam. Instead, one can
use two masses each of 5.3 kg, or a set consisting of three masses of 3.5 kg each. Alternatively, a set consisting
of four masses each equals 2.62 kg can be used. These masses are attached in the left half of the beam at peaks
or troughs of the flexural wave of the unloaded beam. Another interesting observation is that a similar effect
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Fig. 6. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 60Hz, F0 ¼ 1000N, x0 ¼ 10m,

m1 ¼ 10.85 kg, J1 ¼ 0 kgm2, at b1 ¼ 8.5315m, ––––, loaded; - - - -, unloaded; J, mass location.
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can be obtained using a spring instead of a mass. In Fig. 7, the excitation frequency is o ¼ 60Hz, a spring of
stiffness 26 MN/m is attached at a1 ¼ 10.0371m, which corresponds approximately to 5l from the left end of
the beam, has an effect similar to that of a mass in controlling the vibration propagation. Other alternative,
which gives a similar effect, can be obtained using a combination of a spring and a mass. In Fig. 8, the
excitation frequency o ¼ 60Hz, a spring of stiffness 4 MN/m is attached at a1 ¼ 10.539m, which corresponds
to 5.25l from the right end of the beam and a mass equals 7.75 kg is attached at b1 ¼ 8.5315m which
corresponds to 4.25l.

With regards to the change of the location of the excitation force, Fig. 9 indicates the transverse
displacements when the force with excitation frequency o ¼ 100Hz acts at x0 ¼ 6m from the left end of the
beam. For the unloaded beam the vibrational amplitude to the right of the force is more pronounced than that
to the left of the force. However, the attachment of 276 kg mass can shift all the vibrational energy to the left
of the force and leave the right region at rest position despite the fact that the unloaded beam experiences
substantial deflection within that region. The added mass appears to be relatively large however the mass ratio
is 0.0677, which is acceptable for engineering applications. If the beam were modeled as an Euler–Bernoulli
beam, the attached mass would be 299 kg. Therefore for a Timoshenko formulation one uses less mass to
suppress the vibration. Fig. 10 shows that one can attach a spring of stiffness 71.75 MN/m at a1 ¼ 6.6111m,
which corresponds to 4.25l from the left end of the beam, to give a similar effect as of a mass in controlling the
propagation of vibration.

It is interesting to note that if one requires to confine the vibration near the mechanical disturbance and to
prevent it from transmitting towards other parts of the structure, he can use two springs as shown in Fig. 11.
The excitation force is 1000N acts at the mid-span of the beam and the excitation frequency o ¼ 50Hz. It is
needed to suppress the vibration on both sides of the beam. This can be achieved by attaching two springs with
the same stiffness k1 ¼ k2 ¼ 28MN/m at a1 ¼ 8.2455m and a2 ¼ 11.7545m. These locations correspond to
3.75l from the left support and 3.75l from the right support respectively.
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Fig. 7. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 60Hz, F0 ¼ 1000N, x0 ¼ 10m,

k ¼ 26MN/m, at a1 ¼ 10.0371m, ––––, loaded; - - - -, unloaded; &, spring location.
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One particular consequence of the above results is that there are many alternatives that can be used to
suppress vibration in a certain part of a beam structure. This is beneficial to practical implementation because
one can choose the alternative that suits certain application.

3.2. Inertia of added masses are not neglected

A point mass is, of course, a mathematical fiction which cannot be realized physically. Therefore, a finite
mass of a suitable size is added instead. To investigate the effect of the mass moment of inertia of this added
mass on the vibration suppression, Fig. 12 depicts the dynamic response of a simply supported beam with
excitation force acts at a mid-span with an amplitude F0 ¼ 1000N and an excitation frequency o ¼ 60Hz. A
single mass of a 7.9 kg with a mass moment of inertia J1 ¼ 0.9 kgm2 attached at 8.5315m, which corresponds
to 4.25l, is needed to suppress the vibration in the right half of the beam. This is compared to a mass of value
10.85 kg if one neglects the moment of inertia of the attached mass as given in Fig. 6. Therefore, the value of
the added mass required to suppress vibration is decreased when its mass moment of inertia was taken into
account. Table 3 summarizes the results for the Timoshenko beam model with and without neglecting the
effect of moment of inertia of the added masses compared to the results obtained from using Euler–Bernoulli
beam model for different excitation frequencies. This table shows that the results from the Timoshenko beam
theory are markedly different from that of the Euler–Bernoulli theory. These differences become more
pronounced at high frequencies. Furthermore, the analyst should be aware that the aspect ratio of the beam
also could cause many differences between both theories.

3.3. A bi-harmonic excitation force

Fig. 13 shows the dynamic response of a beam subjected to a bi-harmonic force that acts at the mid-span of
the beam; x0 ¼ 10m. The excitation amplitudes are F01 ¼ F02 ¼ 1000N with excitation frequencies
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Fig. 8. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 60Hz, F0 ¼ 1000N, x0 ¼ 10m,

k ¼ 4 MN/m at a1 ¼ 10.5390m, m ¼ 7.75 kg, J1 ¼ 0 kgm2 at b1 ¼ 8.5315m, ––––, loaded; - - - -, unloaded; J, mass location; &, spring

location.
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o1 ¼ 60Hz and o2 ¼ 100Hz. In the figure, m1 ¼ 10.5 kg is attached at b1 ¼ 8.5315m which corresponds to
4.25l1, and m2 ¼ 38.5 kg is attached at b2 ¼ 6.6111m which corresponds to 4.25l2, where l1 and l2 are the
flexural wavelengths corresponding to the excitation frequencies o1 and o2, respectively. The mass moments
of inertia of the added masses J1 ¼ J2 ¼ 0.25 kgm2. This situation can be understood physically as the system
is linear and the superposition principle holds. From the results presented one concludes that the analysis can
be extended in a relatively straightforward way to tackle a beam subjected to a periodic excitation.

3.4. Suppression of vibration near resonance

The vibration reduction along the entire beam can be achieved near resonance conditions because in this
case the motion of the beam is a simple spatial waveform that can be cancelled by a single opposing wave
created by a single attachment. Fig. 14 depicts the displacement responses of loaded and unloaded beams. The
excitation frequency o ¼ 25.49Hz which is near the 13th natural frequency of the beam without attachments.
If a 40 kg mass was attached at b1 ¼ 8.4667m which corresponds to 2.75l, the vibration along the entire beam
would be cancelled. The mass ratio is 0.0098. Also the added mass can be attached at any peaks or troughs of
the flexural wave. This effect is similar to that of the dynamic vibration absorber, which is used to quench the
vibration of the harmonically excited single degree of freedom system. Physically the inertia force of the added
mass creates anti-wave so that when the original flexural wave and its anti-dote are added together the result is
no vibration. Comparable phenomena are encountered in active noise cancellation by introducing annihilating
signal (anti-sound) [46].

3.5. Dual excitation forces

For a beam excited by two excitation forces acting at different locations, one can control the vibration in the
middle or in any part of the beam depending on the applications. Fig. 15 shows a simply supported beam
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Fig. 9. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 100Hz, F0 ¼ 1000N, x0 ¼ 6m,

m1 ¼ 276 kg, J ¼ 0 kgm2 at b1 ¼ 1.9444m, ––––, loaded; - - - -, unloaded; J, mass location.
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subjected to two excitation forces acting at x01 ¼ 6m and x02 ¼ 14m from the left end support. The value of
each force is F01 ¼ F02 ¼ 1000N with frequency o1 ¼ o2 ¼ 100Hz. To suppress the vibration in the part of
the beam between the two forces one can attach two masses m1 ¼ m2 ¼ 260 kg at b1 ¼ 1.9444m and
b2 ¼ 14.944m, which corresponds to 1.25l from the left support and 3.25l from the right support,
respectively. The mass ratio is 0.1276, which is still reasonable for engineering applications.

Fig. 16 depicts the same beam but for excitation frequency o ¼ 60Hz. The response of the unloaded beam
shows that the vibration is diminished between the two applied forces. However, in certain application one
needs to suppress the vibration at the left part of the force that acts at 6m. Then one should attach an 80 kg
mass at 2.25l from the left support and another 20 kg mass at 4.25l from the right support. These distances
correspond to 4.5167m and 11.4685m from the left support, respectively. On the other hand, if one is
interested in suppressing the vibration to the right of the force that acts at x02 ¼ 14m, a 20 kg mass should be
attached at b1 ¼ 11.4685m and another 80.5 kg mass at b2 ¼ 15.483m as shown in Fig. 17.

3.6. Different end conditions

The formulation presented is applicable to any beam structure with conventional and non-conventional
boundary conditions. This is because the boundary conditions are impeded in the derived Green’s function of
a specific beam. For example, to suppress the vibration in a cantilevered beam, Fig. 18 shows a 4m long beam
excited at its tip with an excitation force F0 ¼ 1000N and excitation frequency o ¼ 23.887Hz. This excitation
frequency is close to the third resonance frequency of the unloaded beam. The mass required to suppress the
vibration along that beam and makes it nearly stationary is found to be equal to 20 kg and to be located at
b1 ¼ 2.775m from the fixed end. The mass ratio is 0.0245. A similar effect can be obtained by using a spring
instead of a mass. The required spring stiffness is 0.6 MN/m and to be attached at a1 ¼ 2.775m as depicted in
Fig. 19.
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Fig. 10. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 100Hz, F0 ¼ 1000N, x0 ¼ 6m,

k ¼ 71.75N/m at a1 ¼ 6.6111m, ––––, loaded; - - - -, unloaded; &, spring location.
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Fig. 20 illustrates the deformation fields of loaded and unloaded clamped–clamped beam. The excitation
frequency o ¼ 4.55Hz which is near the fourth natural frequency of unloaded beam. The excitation force is
F0 ¼ 1000N acts at mid-span of the beam. A spring of stiffness k ¼ 8MN/m attached at a1 ¼ 5.4946m, which
corresponds to 0.75l, is found to cancel the vibration along the entire beam.

In Fig. 21, the same clamped–clamped beam is excited by a force F0 ¼ 1000N that acts at its mid-span. The
excitation frequency o ¼ 10Hz. It is observed that a spring of stiffness k ¼ 1.95MN/m attached at
a1 ¼ 8.6m, which corresponds to 1.75l would cancel out the vibration in the left part of the beam. If the
spring cannot be used due to some practical constraints, a mass equals 354 kg would be attached at b1 ¼ 8.6m
to give the same effect as that of the spring as shown in Fig. 22. The mass ratio is 0.0869.

3.7. Imposing a node at certain location

By properly selecting values of the attachments’ parameters and their locations, one could eliminate motion
at a specific point on the beam, i.e. creating a node at this location. This is important for some design
applications where one could place instrument that sensitive to vibration at or near a purposely created node.
For the sake of simplicity we assume no springs are attached to the beam. In addition we assume only one
point mass is to be attached at distance b1. Therefore, Eq. (30) holds. To introduce a node at a desired location
xn along the beam we require that

W xnð Þ ¼ F0G xn; x0ð Þ þ
m1o2F0G b1; x0ð Þ

1�m1o2G b1; b1ð Þ
G xn; b1ð Þ ¼ 0. (32)

Solving for the required mass

m1 ¼
G xn; x0ð Þ

o2 G b1; b1ð ÞG xn;x0ð Þ � G b1; x0ð ÞG xn; b1ð Þ½ �
. (33)
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Fig. 11. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 50Hz, F0 ¼ 1000N, x0 ¼ 10m,

k1 ¼ k2 ¼ 28 MN/m at a1 ¼ 8.2455m, a2 ¼ 11.7545m, ––––, loaded; - - - -, unloaded; &, spring location.
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Therefore, a node can always be introduced anywhere along the structure for any excitation frequency as long
as m1o

2G(b1,b1) 6¼1 and m1 is positive in addition to the mass ratio should be small to have a meaningful result.
Eq. (33) indicates that the value of the required mass does not depend on the amplitude of the excitation force.
More recently, Cha [47] has used simple oscillators to introduce a node at any location of a harmonically
oscillating Euler–Bernoulli beam. His analysis is based on the assumed mode method.

Fig. 23 illustrates the above results. A simply supported beam is excited by a harmonic force of amplitude
F0 ¼ 1000N with excitation frequency o ¼ 5Hz that acts at the mid-span of the beam; x0 ¼ 10m. The
required node, say, is to be introduced at the point of application of the external force i.e. xn ¼ 10m, and the
selected location of the attached mass is b1 ¼ 1.25l which corresponds to 8.6877m. Then value of the mass
would be m1 ¼ 369.7794 kg. The mass ratio is 0.0908. One may suspect the results shown in Fig. 23 arguing
that since the force is being applied at a single point, then if the beam has a node at this point, then the forced
vibration will be zero because no work can be done by the excitation force. But this suspicion can be proven
unfounded because a similar situation occurs in the undamped dynamic vibration absorber theory. The
excitation force that acts on the main mass (primary mass) results in vibration of both main mass and absorber
mass (auxiliary mass). However, when tuning is satisfied, the main mass becomes stationary (no work is
injected into the system) but the absorber mass is being vibrated. Ginsberg [48] has a good discussion on this
subject. Consider again the aforementioned simply supported beam, now if it is desired that the node be
imposed at xn ¼ 11m, then the value of the attached mass would be m1 ¼ 234.1015 kg (m ¼ 0.0575) as
illustrated in Fig. 24. Consider now a cantilevered beam of length 4m that is subjected to a concentrated
harmonic force of amplitude F0 ¼ 1000N and frequency o ¼ 20Hz acts at x0 ¼ 4m. It is wished that a node
be imposed at xn ¼ 3.5m. If one selects the position of the added mass to be b1 ¼ 3m, then its value will be
149.9417 kg.

The mass ratio is m ¼ 0.184. Fig. 25 illustrates the lateral displacement of the loaded beam compared to that
of the unloaded one.
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Fig. 12. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 60Hz, F0 ¼ 1000N, x0 ¼ 10m,

m1 ¼ 7.9 kg, J1 ¼ 0.9 kgm2 at b1 ¼ 8.5315m; ––––; loaded; - - - -, unloaded; J, mass location.

Table 3

Comparison between Timoshenko and Euler–Bernoulli models

No. of masses or springs Frequency Euler–Bernoulli formulation Timoshenko formulation Timoshenko formulation

(Hz) m (kg) m (kg), J ¼ 0 m (kg) J (kgm2)

One mass 20 420 420 363 0.9

60 13.5 10.85 7.9 0.9

100 55.6 49.5 38.5 0.25

Two masses 20 145 145 115 0.9

60 6.55 5.3 3.72 0.9

100 24.5 21.75 14.6 0.25

Three masses 20 85 85 63 0.9

60 4.3 3.5 1.88 0.9

100 15.7 14.1 7.63 0.25

Four masses 20 61.5 61.5 41.75 0.9

60 3.24 2.62 0.95 0.9

100 11.55 10.41 4.51 0.25
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4. Conclusions

The problem of achieving vibration suppression or confinement in a beam structure subjected to an external
excitation force has been examined analytically. This is achieved by adding translational springs and/or finite
masses having mass moment of inertia at different locations on the beam. For a simply supported beam with
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Fig. 13. Analytical displacement responses of loaded and unloaded simply supported beam when o1 ¼ 20Hz, o2 ¼ 60Hz,

F01 ¼ F02 ¼ 1000N, x0 ¼ 10m, m1 ¼ 400kg, m2 ¼ 10.5 kg, J1 ¼ J2 ¼ 0.25 kgm2 at b1 ¼ 4.3445m, b2 ¼ 8.5315m, ––––, loaded; - - - -,

unloaded; J, mass location.

Fig. 14. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 25.49Hz, F0 ¼ 1000N, x0 ¼ 10m,

m1 ¼ 40 kg, J1 ¼ 0 kgm2 at b1 ¼ 8.4667, ––––, loaded; - - - -, unloaded; J, mass location.
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Fig. 15. Analytical displacement responses of loaded and unloaded simply supported beam when F01 ¼ F02 ¼ 1000N, o1 ¼ o2 ¼ 100Hz,

x01 ¼ 6m, x02 ¼ 14m, m1 ¼ m2 ¼ 260 kg, J1 ¼ J2 ¼ 0 kgm2 at b1 ¼ 1.944m and b2 ¼ 14.944m, ––––, loaded; - - - -, unloaded; J, mass

location.

Fig. 16. Analytical displacement responses of loaded and unloaded simply supported beam when F01 ¼ F02 ¼ 1000N, o1 ¼ o2 ¼ 60Hz,

x01 ¼ 6m, x02 ¼ 14m, m1 ¼ 80.5 kg, m2 ¼ 20 kg, J1 ¼ J2 ¼ 0 kgm2 at b1 ¼ 4.5167m and b2 ¼ 11.4685m, ––––, loaded; - - - -, unloaded; J,

mass location.
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Fig. 17. Analytical displacement responses of loaded and unloaded simply supported beam when F01 ¼ F02 ¼ 1000N, o1 ¼ o2 ¼ 60Hz,

x01 ¼ 6m, x02 ¼ 14m, m1 ¼ 20 kg, m2 ¼ 80.5 kg, J1 ¼ J2 ¼ 0 kgm2 at b1 ¼ 11.4685m and b2 ¼ 15.483m, ––––, loaded; - - - -, unloaded; J,

mass location.

Fig. 18. Analytical displacement responses of loaded and unloaded cantilever beam when o ¼ 23.5887Hz, F0 ¼ 1000N, x0 ¼ 4m,

m1 ¼ 20 kg, J1 ¼ 0 kgm2 at b1 ¼ 2.775m, ––––, loaded; - - - -, unloaded; J, mass location.
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Fig. 19. Analytical displacement responses of loaded and unloaded cantilever beam when o ¼ 23.5887Hz, F0 ¼ 1000N, x0 ¼ 4m,

k1 ¼ 20 kg, at a1 ¼ 2.775m, ––––, loaded; - - - -, unloaded; &, spring location.

Fig. 20. Analytical displacement responses of loaded and unloaded clamped–clamped beam when o ¼ 10Hz, F0 ¼ 1000N, x0 ¼ 10m,

k1 ¼ 1.95MN/m at a1 ¼ 8.6m, ––––, loaded; - - - -, unloaded; &, spring location.
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Fig. 21. Analytical displacement responses of loaded and unloaded clamped–clamped beam when o ¼ 10Hz, F0 ¼ 1000N, x0 ¼ 10m,

k1 ¼ 1.95MN/m at a1 ¼ 11.3992m, ––––, loaded; - - - -, unloaded; &, spring location.

Fig. 22. Analytical displacement responses of loaded and unloaded clamped–clamped beam when o ¼ 10Hz, F0 ¼ 1000N, x0 ¼ 10m,

m1 ¼ 354 kg, J1 ¼ 0 kgm2 at b1 ¼ 5.4946m, ––––, loaded; - - - -, unloaded; J, mass location.
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Fig. 23. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 5Hz, F0 ¼ 1000N, x0 ¼ 10m,

xn ¼ 10m, m1 ¼ 369.7794kg, J1 ¼ 0 kgm2, at b1 ¼ 8.6877m, ––––, loaded; - - - -, unloaded; J, mass location.

Fig. 24. Analytical displacement responses of loaded and unloaded simply supported beam when o ¼ 5Hz, F0 ¼ 1000N, x0 ¼ 10m,

xn ¼ 11m, m1 ¼ 234.1015kg, J1 ¼ 0 kgm2, at b1 ¼ 8.6877m, ––––, loaded; - - - -, unloaded; J, mass location.
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Fig. 25. Analytical displacement responses of loaded and unloaded cantilevered beam when o ¼ 20Hz, F0 ¼ 1000N, x0 ¼ 4m,

xn ¼ 3.5m, m1 ¼ 149.9417kg, J1 ¼ 0 kgm2, at b1 ¼ 3m, ––––, loaded; - - - -, unloaded; J, mass location.
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an external force that acts at its mid-span, the displacement amplitude on either side of the external force can
be suppressed by adjusting the value of the added mass. From the control point of view this is called a passive
control method aimed to regulate the vibration displacement. Essentially the added masses cause modal
cancellation, which occurs when the dominant modes involved in the vibration appear in phase on one side but
out of phase on the other side of the point force. This study may be of particular use if there is an interest in
eliminating unwanted vibrations from certain parts of a beam structure more than other or preventing a
localized excitation from propagating into certain parts.
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